

Preparing for the new DOE 2016 Transformer Efficiency Law

POWER FOR THE FUTURE

OWERSMITHS

S

9001

ISO 17025

Transformers

Why is DOE legislating Transformer Efficiency ? Based on Dept. Of Energy Study

- ~ 11 million dry-type transformers
- Economic & Grid Impact
 - 60-80 Billion kWh losses
 - 9 days generating capacity
 - Annual Cost \$3-4 Billion/year
- Environmental Impact

Powersmiths

- Requires burning 145 Million tons of coal
- Resulting in CO2, Acid Rain, Smog

Losses and Pollution embedded for 30 + years

CTRICAL ROOM

You Never Know What Happens Behind Closed Doors.

The E-SAVER^{**} reduces energy losses up to 60% or more and is manufactured with the lowest environmental immed. (ISO 14001).

e-SAER

POW*ersm*^îthS

Lowest First Cost predominates market embedding energy tax for 30+ years

Energy Operating Cost Can reach 20-30 times the purchase price over installed life

Why does it happen ?:

- Low Bid encourages cheapest first cost -> least efficient
- Small part of package, "invisible"
- Buyer is not one who pays for energy bill, ...

New Federal Register Final Rule Raises Minimum Legal Efficiency

- Outlaws current minimum EPACT 2005/NEMA TP1
- Takes effect Jan 1, 2016

23336 Federal Register / Vol. 78, No. 75 / Thursday, April 18, 201

DEPARTMENT OF ENERGY

10 CFR Part 431

[Docket No. EERE-2010-BT-STD-0048]

RIN 1904-AC04

Energy Conservation Program: Energy Conservation Standards for Distribution Transformers

AGENCY: Office of Energy Efficiency and Renewable Energy, Department of Energy. ACTION: Final rule.

Pow*e*rsmîthS

FOR FURTHER INFORMATION CONTACT: James Raba, U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Building Technologies Program, EE–2J, 1000 Independence Avenue SW., Washington, DC, 20585–0121. Telephone: (202) 586–8654. Email: Distribution_Transformers@ ee.doe.gov. Ami Grace-Tardy, U.S. Department of Energy, Office of the General Counsel, GC-71, 1000 Independence Avenue SW., Washington, DC, 20585–0121. Telephone: (202) 586–5709. Email:

FEDERAL REGISTER

Vol. 78	Thursday,
No. 75	April 18, 2013

Part II

Department of Energy

10 CFR Part 431

Energy Conservation Program: Energy Conservation Standards for Distribution Transformers; Final Rule

Update to 2016 transformer spec now to avoid Change Order

- If building is going up in 2016 or later
- Avoid potential change order if current spec calls for today's TP1 which in 2016 will be illegal....

Powersmiths

Powersmiths ESAVER 2018 Guide Specification HIGH EFFICIENCY K-7 DRY TYPE TRANSFORMERS (US DOE 2016)

SECTION 26-22-13 Sept 03, 2014

SECTION 26-22-13 - HIGH EFFICIENCY K-7 TRANSFORMERS (US DOE 2016)

PART 1 GENERAL

1.1 WORK INCLUDED

- A. Copper-wound transformers exceeding US Department of Energy 2016 mandated minimum efficiency. These transformers shall be UL listed to feed a K-7 electronic equipment load profile and be optimized to minimize optating cost under light loading.
- B. Compliance with full specification is required
- C. Basic compliance with NEMA TPD/EPACT2005, NEMA Premium, CEE Tier 1, or CSL3 is not sufficient to meet this specification due to the fullowing:
 - a. Efficiencies must exceed the US DOE 2016 minimum requirement
 - b. No load losses must comply with those defined in this specification
 - Efficiency at low load and under nonlinear K-7 load must meet the minimum requirements of this specification.
 - d. K-7 listing per UL 1561 is required
 - e. Comprehensive testing under linear and nonlinear loading is required to verify specified performance
 - f. Performance submittals are required

1.2 REFERENCES

E

0.

L

- US Department of Energy, 10 CFR Part 431, April 18, 2013. Energy Conservation Program: Energy Conservation Standards for Distribution Transformers; Final Rule
- B. DOE Test Method for Measuring the Energy Consumption of Distribution Transformers under Appendix A to-Subpart K of 10 CFR part 431.
- C. ANSI/NEMA ST 20 Dry Type Transformers for General Applications.
- D. NEMA Premium Efficiency Transformers Program
 - Constituum for Energy Efficiency (CEE): Specification for Low-Voltage, Dry- Type Distribution Transformers
- F. EPACT 2005 United States Energy Policy Act 2005 / NEMA TP1 Guide for Determining Energy Efficiency for Distribution Transformers
 - NEMA TP1 Guide for Determining Energy Efficiency for Distribution Transformers
- II. ANSI/NEMA TP-2 Standard Test Method for Measuring Energy Consumption of Distribution Transformers
 - Metering Standards:
 - a. Computational algorithms per IEEE Std 1459-2000
 - b. UL 916, UL 61010C-I CAT III

Design Line 7 LCC Results

ENERGY R

Energy Efficiency & Renewable Energy

POWersmiths

US Dept. of Energy Significant Lifecycle Savings efficiency beyond 2016 mandate

Efficiency Level	2015-2044 Savings
Level 4	\$12B
Level 5	\$14.5B
Level 6	\$19.4B

DOE 2016 raises efficiency bar but has important weaknesses

- Same weaknesses as current law TP1
- Efficiency Requirement only @ 35% of nameplate rating
- Ideal Linear load factory test only

Powersmiths

- Does not reflect real world performance
- Actual operating efficiency can be MUCH lower than published data you get less than you think

FEDERAL REGISTER

Vol. 78	Thursday,	
No. 75	April 18, 2013	
Part II		
Departmen	t of Energy	

Prenty Conservation Program: Energy Conservation Standards

Cadmus Study documents lightly loaded transformers in many applications

Metered Load Factors for Low-Voltage, Dry-Type Transformers in Commercial, Industrial and Public Buildings

The Cadmus Group Inc. 12/7/99, Prepared for Northeast Energy Efficiency Partnership

POW*ersmiths*

Overview of Transformer Efficiency vs. Real World Load Distribution

POWersmiths

Dramatic Real World Performance Difference

Connected load today is NOT ideal/linear Electronics are everywhere

Electrical systems deliver optimum performance when feeding continuous "linear" loads:

- motors
- incandescent lighting
- resistive heating

Electronics are everywhere - computers, lab, diagnostic & operating equipment, & patient care

Variable Speed Drives run Ventilation System

Overheating Risk

Rated heat output reached at 1/2 load even if only partial load is nonlinear

Transformer Capability for Supplying Electronic Loads

Other manufacturers concede significant decrease in efficiency under nonlinear load

POWERSMITHS

Powersmiths delivers performance under real world nonlinear load conditions

- Lowest no load losses
 - Ensure excellent low load performance
- Design optimized for nonlinear loads
 - Maximize
 Efficiency &
 Power Quality

Proven, significant, real world reduction in losses

Powersmiths

(Losses for 75 kVA Transformer)

Value: Upfront savings vs long term savings

POW*ersmiths*

- Optimized for modern reality: light loading, electronic profile
- Copper, K7, 115C rise, 3dB quieter than NEMA ST20, 6 taps
- Higher 35% efficiency
 - 41% less than NEMA TP1
 - 14% less than DOE 2016, NEMA Premium...
- Qualifies for CEE Tier 1 utility incentive

E-Saver 2016-HP

- Focus: Maximize lifecycle savings
- Optimized for
 - Wide ranging loads (0-100%)
 - Capacity right-sized to the load
 - Data Centers (7x24 operation)
- Copper, K13, 105C rise
- 3dB quieter than NEMA ST20
- Higher 35% efficiency
 - 48% less than NEMA TP1
 - 24% less than DOE 2016, NEMA Premium...

Qualifies for CEE Tier 2 efficiency

What about Harmonics Nonlinear loads are everywhere

• Yes

- amount of electronic equipment continues to rise
- loads are nonlinear

1990's Media focus on harmonics

(EC&M Magazine)

DOUBLE THE NEUTRAL AND DERATE THE TRANSFORMER—OR ELSE!

Arthur Freund, Senior Editor

CBEMA has issued an information letter explaining critical power problems from computer and electronic loads, with drastic recommendations to prevent damage to the distribution system.

OMPUTER AND BUSINESS Equipment Manufacturers Association (CBEMA, pronounced "seebeemah") is the electronic business equipment industry equivalent of the electrical industry National Electrical Manufacturers Association (NEMA). CBEMA became aware that the proliferation of switching-mode power supplies for computers and business equipment was resulting in large harmonic currents, and that these harmonics were causing severe and increasing problems in electrical distribution systems and equipment. (See "Nonlinear loads mean trouble" in ECdM, March, 1988). John Roberts, Manager of Corporate Power Standards for IBM, is chairman of the Power Subcommittee of the Environment and Safety Subcommittee of CBEMA. This subcommittee studied the problem and possible solutions, and CBEMA has issued an

POW*ersmiths*

Newer equipment uses less power

System Reality has changed

since 90's

Electrical Systems are lightly loaded

Harmonic content has declined over past decade due to cleaner power supply designs

POWERSMITHS

T1000-2016 Harmonic Mitigating Transformer

- Improves Power Quality & saves Energy under harmonic rich load
- Harmonic mitigation premium quickly paid for out of energy savings
- Small adder for long term protection for load changes in future
- Copper, K13, 115C rise
- Higher 35% efficiency
 - 41% less than NEMA TP1
 - 14% less than DOE 2016, NEMA Premium...
- Qualifies for CEE Tier 1 utility incentive

Powersmiths T1000-2016 Application – Ultra-Efficient System-Based Harmonic Treatment

- 3rd harmonic cancelled in secondary windings
- 5^{th} & 7^{th} are inverted through 30 deg. Shift and subtract a the main DP
- Voltage is kept clean for loads, current is cleaned up for upstream system benefit
- Loads continue to draw current per their design spec. for maximum immunity and ride-through

POW*ersmiths*

E-Saver-SOL

- Ultra efficient low voltage, dry type, up to 600V, 10-1000kVA
- Optimized for solar load profile @ 0% to100% loading
- All Winding configurations (typically Y-D, Y-Y)
- Great payback, lowest lifecycle cost high value of solar kWh

Low E-Saver-SOL losses mean more solar kWh reach the meter

Powersmiths has DOE 2016 guide specs

- ESAVER-2016
 - K7, Real World Efficiency
- ESAVER-2016-HP
 - K13, Real World Efficiency, lowest lifecycle cost
- T1000-2016
 - Harmonic Mitigation
 - Real World Efficiency
 - Lowest Voltage Distortion

ESAVER-SOL

- Minimize Solar Losses
- Energy Station PDUs
 - Reduce Datacenter PUE & footprint

Powersmiths ESAVER 2018 Guide Specification HIGH EFFICIENCY K 7 DRY TYPE TRANSFORMERS (US DOE 2016)

SECTION 26-22-13 Sept 03, 2014

807-000439-128-A05

SECTION 26-22-13 - HIGH EFFICIENCY K-7 TRANSFORMERS (US DOE 2016)

PART 1 GENERAL

1.1 WORK INCLUDED

- A. Copper-wound transformers exceeding US Department of Energy 2016 mandated minimum efficiency. These transformers shall be UL listed to feed a K-7 electronic equipment load profile and be optimized to minimize openting cost under light loading.
- B. Compliance with full specification is required
- C. Basic compliance with NEMA TP1/EPACT2005, NEMA Premium, CEE Tier 1, or CSL3 is not sufficient to meet this specification due to the following:
 - a. Efficiencies must exceed the US DOE 2016 minimum requirement
 - b. No load losses must comply with those defined in this specification
 - c. Efficiency at low load and under nonlinear K-7 load must meet the minimum requirements of this specification
 - d. K-7 listing per UL 1561 is required
 - e. Comprehensive texting under linear and nonlinear loading is required to verify specified performance
 - f. Performance submittals are required

1.2 REFERENCES

B.

C D E

E. G. H.

HIGH EFFICIEN Section 26-22-13

	US Department of Energy, 10 CFR Part 431, April 18, 2013. Energy Conservation Program-Energy Conservation Standards for Distribution Transformers; Final Rule
	DOE Test Method for Measuring the Energy Consumption of Distribution Transformers under Appendix A to Subpart K of 10 CFR part 431.
	ANSI/NEMA ST 20 - Dry Type Transformers for General Applications.
	NEMA Premium Efficiency Transformers Program
	Consortium for Energy Efficiency (CEE): Specification for Low-Voltage, Dey-Type Distribution Transformers
	EPACT 2005 - United States Energy Policy Act 2005 / NEMA TPI - Guide for Determining Energy Efficiency for Distribution Transformers
	NEMA TP1 - Guide for Determining Energy Efficiency for Distribution Transformers
	ANSI/NEMA TP-2 - Standard Test Method for Measuring Energy Consumption of Distribution Transformers
	Metering Standards:
	a. Computational algorithms per IEEE Std 1459-2000
	b. UL 916, UL 61010C-1 CAT III
SE	CIENCY KIT TRANSFORMERS (US DOE 3016)

POWERSMITHS

Right-Sizing

Right-Size as much as possible

- Select transformer as close to NEC Calc as possible
- Intermediate kVA sizes are available use them
- Big Upfront construction budget savings:
 - Smaller distribution COSTS LESS
 - transformer, panelboard, breakers, conductors, conduit
 - Smaller footprint of infrastructure
- The smaller system is win-win
 - Helps construction budget reduces first cost
 - Helps operating budget energy savings

Standard	Additional
kVA	kVA
15	
	20
	25
30	
45	
	50
	63
75	
	100
112.5	
	125
150	
	175
	200
225	
	250
300	
	400
	450
500	
	600
750	
	850
1000	

Retrofits and Major Renovations

H

Major Renovations-DON'T LEAVE THE OLD TRANSFORMERS

- Near end of life
 DOE = 32 yrs
- Inefficient
- Not compatible with modern electronics
- Failure mode is expensive, downtime
- Pays for itself out of energy savings
- Add more savings since "low hanging fruit" savings already taken

Energy Saving -ROI - Life Cycle Cost - Environmental Impact

General LEED **Mission Critical**

POWERSMITHS											
Toll Free : 1-800-747-9627 or (905) 791-1493		Energy Savings Payb	ack Calculator								
Black box indicates data entry field	Now Project										
Date	13-Sep-02										
Date Entry	13-3ep-02		Transformers	on Project							
% Load during normal operating hours	35%			kVA							
% Load outside operating hours	20%		seri	15							
equipment operating http://day	10		15	30							
equipment operating days/vr	260		15	45							
kWh rate	\$ 0.080		4	75							
demand rate (\$/kW/mo) ex. \$10.00	\$10.00			112.5							
Load Power Factor	0.90			150							
% additional cooling losses	0%			225							
		Nonlin Loss Mult		300							
Other Transformer Linear Efficiency & Loss Multiplier*	95.0%	2.0		500							
Powersmiths Nonlinear Efficiency	98.0%			Other kVA							
Energy Cost Analysis (calc)	Annual Operating Cost	kW Losses in	kW Losses	s outside							
Traditional Transformers *	\$30.404		operauny	5							
Powersmiths Transformers	\$5 584	92	5	2							
ANNUAL Energy Savings with Powersmiths	\$24.819	40.7	23.3								
	<u> </u>	ł									
Estimated Annual Power Quality Savings	\$0										
				1							
		Life Cyc	e Cost								
Life Cycle Savings and Payback	First Cost	Operating	Total Ownership								
Traditional Transformers	\$52,000	\$760,095	\$812,095								
Powersmiths Transformers	\$80,000	\$139,609	\$219,609								
Total Life Cycle Savings	-\$28,000	\$620,486	\$592,486								
Payback on Incremental Cost	1.13	years									
			-	,							
Leasing Option	60 Month Term	48 Month Term	36 Month Term								
Total Annual Leasing Payments	\$21,216	\$25.680	\$32,784								
Net Annual Cost with savings	(\$3.603)	\$861	\$7.965								
.	(+-)/	• • •	+ /	l							
Summary of Environmental Benefits	404	1	4 4 4 0								
Annual Reduction in Greenhouse Gases	184	tons of Cool	1,442	kgs of SO2							
	596	tons of Coal	621	Kys OF NOX							
Equivalence	34	Acres trees planted		homes heated							
Equivalence	34	Acrestreesplanted	25	homes heated							
Equivalence	34 25	Acrestreesplanted Car Emissions	25	homes heated							
Equivalence MPORTANT:By using the ESP Calculator TM , you are agreeing the TEF Powersmiths hterratingal Com is a linearced user Content or kinet to cha	34 25 RMS OF USE section on page	Acres trees planted Car Emissions 2	Powe	RSMITHS							
Equivalence MPORTANT: By using the ESP Calculator TM , you are agreeing the TEF Powersmiths hternational Corp. is a licensed user. Content subject to cha Page 1 of 2 Power Quality Institute 1996-2002, Alfrights reserved	34 25 RMS OF USE section on page nge without notice	Acres trees planted Car Emissions 2	Powe	RSMITHS							

OLUDOD CLUTTIC

POWersmiths

Transformer Options

- Thermal Scan connections through rotatable port
- Safe and Saves time

Safety First – Eliminates

Powersmiths

Rotatable IR Port

Traditional Fixed IR Window

Powersmiths Rotatable IR Port

(recessed model)

Lockable Hinged Doors

- Quick, costeffective access
- thermal scans
- metering
- maintenance

Safety First – Eliminates Arc Flash Risk of opening enclosure

Transformer Integrated Metering & Logging Arc Flash Safe & quick access to data

- Track energy intensive systems or equipment
- History of infrastructure loading

Embedded long term Cyberhawk Express Logger Accessible locally without opening enclosure

Powersmiths

Capable of real-time push to WOW Connect to BAS Access port for efficiency spot checks

Safety First – Eliminates Arc Flash Risk of opening enclosure

Factory Nonlinear Load Test

- Proof of performance
- In ISO 17025
 Efficiency Test Lab

POWersmiths									Model: eSaver-C3L-45-480-208 Serial: 31517						Report	ed by: I	n Yang Nancy X) le	Test Da 10/30/2009 12:57:19 Report Date: 12/10/09							
Step	Ę	TextPO	TextSerialNo	TextVprimary	TextVSeconadry	TextkVARating	ModbusOutput, kVAtot	Loading %	ModbusInput, kWtot	ModbusOutput.kWtd	ExpTrafoEfficiency	ModbusInput.VaTHD	ModbusInput.VbTHD	Modbusinput, VcTHD	ModbusInput.laTHD	ModbusInput. IbTHD	ModbusInput.IcTHD	ModbusOutput.VaTHD	ModbusOutput.VbTHD	ModbusOutput.VcTHD	ModbusOutput.laTHD	ModbusOutput.IbTHD	ModbusOutput: IcTHD	ModbusOutput. 11kfactor	ModbusOutput.12kfactor	ModbusOutput. 13kfactor
1	10/30/2009 12:57:19	TT3697	31517	480	208	45	0.070	0.16	0.152	0	0.00	1.04	1.03	1.22	25.49	32.55	26.8	0	0	0	0	0	0	0	0	0
2	10/30/2009 12:57:45	TT3697	31517	480	208	45	4,400	9.78	2.844	2.695	94.76	1.36	1.44	1.3	80.71	67.32	69.3	0.99	1.86	1.67	111.37	115.11	106.9	13.48	12.3	10.7
3	10/30/2009 12:58:19	113697	31517	480	208	45	8.455	18.79	5.644	5.481	97.11	1.76	1.9	1.67	67.42	63.58	63.4	1.98	2.96	2.76	103.28	107.68	105.3	9.66	10.3	9.84
ŧ	10/30/2009 12:58:52	TT3697	31517	480	208	45	14.320	31.82	10.26	10.06	98.11	2.12	2.19	2.05	49.75	50.58	49.6	3.15	3.94	3.74	92.35	92.32	94.95	7.71	7.43	7.88
5	10/30/2009 12:59:20	TT3697	31517	480	208	45	18.315	40.70	13.38	13.13	98.09	2.52	2.48	2.32	46.58	47.7	46	3.92	4.74	4.48	90.32	89.39	91.77	7.49	7.08	7.41
ò	10/30/2009 12:59:58	TT3697	31517	480	208	45	22.082	49.07	16.49	16.19	98.16	2.61	2.64	2.56	40.48	43.8	41	4.36	5.34	4.97	85.07	84.99	88.94	6.61	6.44	7.09
1	10/30/2009 13:00:28	TT3697	31517	480	208	45	25.675	57.06	19.67	19.3	98.09	2.56	2.76	2.54	36.03	37.57	37.5	4.61	5.65	5.48	82.35	79.93	84.04	6.28	5.78	6.39
3	10/30/2009 13:01:23	TT3697	31517	480	208	45	29.043	64.54	24.16	23.71	98.14	2.58	2.7	2.52	27.16	28.84	28.4	4.6	5.69	5.5	64.49	65.83	67.81	5.01	4.8	5.31
9	10/30/2009 13:02:30	TT3697	31517	480	208	45	32.855	73.01	28.73	28.18	98.08	2.7	2.71	2.61	21.81	23.24	23.1	4.89	5.95	5.68	53.15	55.68	56.83	4.17	4.05	4.4
0	10/30/2009 13:03:19	TT3697	31517	480	208	45	37.199	82.66	33.74	33.06	98.00	2.61	2.76	2.58	18.38	19.61	19.1	4.62	5.74	5.39	44.48	47.76	47.95	3.34	3.38	3.54
1	10/30/2009 13:04:20	TT3697	31517	480	208	45	41.565	92.37	38.53	37.71	97.88	2.56	2.68	2.48	15.77	16.81	16.3	4.65	5.57	5.48	38.2	41.85	41.53	2.73	2.85	2.93
2	10/30/2009 13:05:06	TT3697	31517	480	208	45	45.973	102.16	43.5	42.53	97.77	2.57	2.66	2.5	13.8	14.72	14.1	4.62	5.5	5.42	33.41	37.14	36.61	2.34	2.47	2.52
3	10/30/2009 13:06:03	TT3697	31517	480	208	45	50.378	111.95	48.35	47.15	97.53	2.43	2.56	2.36	12.24	13.1	12.5	4.39	5.38	5.14	29.72	33.37	32.76	2.06	2.2	2.22
í	10/30/2009 13:06:35	TT3697	31517	480	208	45	54.791	121.76	53.2	51.77	97.30	2.42	2.5	2.31	10.96	11.77	11.1	4.32	5.36	5.11	26.7	30.31	29.62	1.85	1.98	2
٦t	10/30/2009 13:07:31	TT3697	31517	480	208	45	25.933	57.63	26.02	25.63	98.50	1.07	1	1.27	0	0.31	0.32	0	0	0	0	0	0	1	1	1

Step 8 – 9 Add three phase non-linear load

Step 10- 14 Step 15 Add resistive load Only resistive load

Note: Effliciency Measurement Based On Power Out/ Power In at Room Temperature. (No Temperature Correction Applied)

Data Center Products

Data Center Applications

Focus:

Transformer Attributes

- Efficiency
- Power Quality
- Low Inrush
- Impedance Optimization

POWERSMITHS

Data Center Application: Comprehensive Integrated Distribution

Focus

- Efficiency
- Minimize Effective footprint (ex. front-only access)

Load Migration: Multi-Voltage 208/415/480

Transformer with Integrated Breakers Feed Overhead Busways

- 2 x Output or Input/Output
- Either side
- Small Footprint
- Less Expensive than
 Switchgear or PDU
- Advanced Efficiency/PQ Meter – show impact on PUE
- Rotatable IR Port

POW*ersm*^îths

Metering & Logging Products

Revenue Integrated **Power Quality** Certified **Express** options (C300)**200M** smart POWPRSMITTIS POWERSMITHS

POWersmiths

WOW is a comprehensive cloud-based platform that provides enterprise-level sustainability management applications to help organizations reduce energy and validate building system performance

Philip J.A. Ling, P.Eng. VP Technology, Powersmiths International Corp. pling@powersmiths.com 1-800-747-9627

